Transcriptome analysis of TCGA prostate cancer samples identifies an association of poorer survival and aggressive disease biology with CDC-like kinase (CLK) expression and spliceosome regulation

Shawn Cho, MS¹, Atish D. Choudhury, MD, PhD², Catherine Fleener, MS¹, Long Do, PhD¹, Heekyung Chung, PhD¹, Timothy Phalen, PhD¹, Steven Cha, MD¹ ¹Samumed, LLC, San Diego, CA, ²Dana-Farber Cancer Institute, Boston, MA

Background

- Alternative splice variants and genes associated with spliceosome regulatory activity show strong correlation with androgen deprivation therapy resistance, tumor progression, and poorer clinical outcome $^{1-3}$
- Pharmacologic targeting of spliceosome-regulating proteins represents a novel treatment approach for prostate adenocarcinoma (PRAD)
- CLKs regulate the activity of serine/arginine-rich splicing factors (SRSFs) that modulate spliceosome assembly, mRNA splicing, and gene expression^{4,5}
- This study assessed the association of CLKs and mRNA splicing pathways with clinical outcomes in patients with PRAD from The Cancer Genome Atlas (TCGA) utilizing three metrics: Progression-Free Interval (PFI), Gleason Score (GS), and PTEN status

- Genes significantly associated with PFI were identified using Cox proportional hazards regression models (R v3.6.0, coxph v2.43–3). PFI was obtained through TCGA-CDR,⁶ and normalized gene expression values (TPM) were obtained from the UC Santa Cruz Xena Browser. Genes significantly associated with poorer survival were selected with FDR-adjusted Q values < 0.05. A subset of CLKs and genes within the spliceosome complex are highlighted within the volcano plot (**Fig. 1**). Genes whose higher expression was significantly associated with poorer survival were run through the Reactome pathway analysis tool⁷ to find enriched pathways (**Fig. 2**)
- A similar analysis to the above was run using GS. The PRAD cohort was split into two groups: those with clinical GS sums of ≥ 8 and those with sums ≤ 7 . Differential gene expression analysis was performed between the two groups with DESeq2

- Methods

Conclusions

- Transcriptome analysis of TCGA prostate cancer samples revealed an association of spliceosome activity and CLK1 and CLK2 expression with aggressive disease biology in prostate cancer
- A Phase 1 study of SM08502, a novel, small-molecule pan-CLK inhibitor, in subjects with advanced solid tumors is ongoing (NCT03355066)
- This analysis nominates prostate cancer as a tumor type worth further exploring for the clinical activity of SM08502

Results

to find significant genes (Fig. 3), and Reactome pathway analysis was run to find enriched pathways (Fig. 4) To further analyze genes and pathways associated with disease aggressiveness, we analyzed PTEN, a known mutational biomarker associated with adverse clinical outcomes.⁸ TCGA-PRAD was split between PTEN loss-of-function (LOF) and PTEN wild-type (WT) cohorts, where the former group harbored either deleterious PTEN somatic mutations or LOF copy number alterations. Using counts from TCGA, Gene Set Enrichment Analysis (GSEA v3.0, MSigDB Reactome v6.2) was run to find enriched pathways (**Fig. 5**)

TCGA-PRAD was split into top and bottom tertiles by CLK expression and PTEN status. Log-rank tests were used to analyze differences among cohort subtypes, and Kaplan-Meier plots were created to visualize differences in PFI (Fig. 6)

Poster #3521

References

- 1. Paschalis A, et al. Nat Rev Clin Oncol. 2018.
- 2. Ku Y, et al. Nat Rev Urol. 2019.
- 3. Armenia J, et al. Nat Genet. 2018.
- 4. Colwill K, et al. *EMBO J*. 1996.
- 5. Long JC, et al. Biochem J. 2009.
- 6. Liu J, et al. Cell. 2018.
- 7. Fabregat A, et al. Nucleic Acids Research. 2018. 8. Jamaspishvili T, et al. Nature Reviews Urology. 2018.

All authors are employees, shareholders, or consultants of Samumed, LLC Other disclosures are listed in the published abstract.

9360 Towne Centre Drive • San Diego, CA 92121 Email: info@samumed.com