Lorecivivint (SM04690), a Potential Disease-Modifying Osteoarthritis Drug, Inhibits CLK2 and DYRK1A, Novel Molecular Regulators of Wnt Signaling, Chondrogenesis, and Inflammation

Vishal Deshmukh, PhD

Disclosures

- All authors are employees or shareholders of Samumed, LLC
- Lorecivivint is an investigational agent not approved by the FDA or any other regulatory agency

Osteoarthritis (OA) and the Wnt pathway

Degenerative tissue remodeling is due to mechanical forces and inflammation¹

Overexpressed Wnt proteins and pathway mutations are associated with OA²⁻⁵

Increased Wnt signaling drives bone formation, cartilage breakdown, and inflammation⁶⁻⁹

Hypothesis: Inhibiting the Wnt pathway reduces inflammation while protecting and regenerating cartilage

Lorecivivint (LOR; SM04690) preclinical development

LOR inhibits the Wnt pathway through a unique MOA

LOR is a potent and selective kinase inhibitor

318 kinases tested *in vitro*

′RK1/	
4	
CLK2	
Translation	

"Illustration reproduced courtesy of Cell Signaling Technology, Inc. (www.cellsignal.com)"

Alternative splicing regulation of gene expression

CDC-like kinases (CLKs)

- Mott B, et al. Biorganic Med. Chem. Letter. 2009
- 4. Riggs J, et al. J. Med. Chem. 2017

3.

LOR inhibited CLK-mediated SRSF phosphorylation

LOR induced intron retention and modulated alternative splicing

RNA sequencing in hMSCs

LOR inhibited DYRK1A

- DYRK1A inhibition
 - Reduced Wnt signaling¹ (benefited chondrocytes)
 - Reduced SIRT1^{1,2} and increased FOXO1^{3,4} (benefited chondrocytes)
 - Reduced STAT3⁵ (inhibited inflammation)

- Monteagudo S, et.al. *Nat Commun.* 2017
 Khor B, et al. *eLife.* 2015
 Guo X, et.al. *J Biol Chem.* 2010
- 4. Matsuzaki T. Sci Transl Med. 2018
- 5. Akasaki Y, et.al. Osteoarthritis Cartilage. 2014

LOR inhibited SIRT1 and FOXO1 phosphorylation Reduced FOXO1 phosphorylation led to increased nuclear FOXO1 levels

CLK2 and DYRK1A knockdowns inhibited the Wnt pathway

 Knockdowns inhibited Wnt pathway genes and upregulated secreted Wnt inhibitors SFRP2 and DACT1

In vitro siRNA knockdown effects in hMSCs identified by NanoString panel and validated by qPCR *P<0.05, **P<0.01, ***P<0.001 vs. siCtrl

CLK2/DYRK1A knockdown induced chondrocyte differentiation

In vitro siRNA knockdown effects in hMSCs identified by NanoString panel and validated by qPCR *P<0.05, **P<0.01, ***P<0.001 vs. siCtrl

LOR decreased phosphorylation of NF-kB and STAT3

NF-κB and STAT3

In vitro LPS-stimulated synovial fibroblasts

Inhibition of CLK2 and DYRK1A reduced inflammation

In vitro siRNA knockdown effects in BEAS-2B cells Cytokines measured by qPCR Mean ± SEM; *P<0.05, **P<0.01, ***P<0.001 vs. vehicle

LOR MOA

STAT3: Signal transducer and activator of transcription 3, SIRT1: Sirtuin 1, TCF7: Transcription factor 7, NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B cells, FOXO1: Forkhead box O1

LOR summary

- The intranuclear kinases CLK2 and DYRK1A, dual targets of LOR, are novel targets for modulation of Wnt signaling, chondrocyte biology, and inflammation
- LOR protected cartilage, induced chondrogenesis, and reduced inflammation *in vitro* and *in vivo*
- Phase 3 human clinical trials are ongoing

