LORECIVIVINT (SM04690), A POTENTIAL DISEASE-MODIFYING TREATMENT FOR KNEE OSTEOARTHRITIS, DEMONSTRATED CARTILAGE-PROTECTIVE EFFECTS ON HUMAN OSTEOARTHRITIS EXPLANTA

Poster #166

Background

• Excessive Wnt pathway signaling contributes to osteophyte formation, cartilage degeneration, and inflammation in knee osteoarthritis (OA).
• Lorcivivint (LOR) is an intra-articular (IA), small-molecule drug candidate that modulates Wnt pathway activity via CLK/DYRK1A inhibition.
• LOR has demonstrated potential as a treatment for knee OA in randomized controlled trials, with improvements seen in pain and function as well as maintenance of radiographic medial joint space width in a target population.
• The cartilage-protective effects of LOR in knee OA were measured by assessing catabolic enzyme expression and activity in cartilage explants from human total knee replacement (TKR) donors.

Conclusions

• LOR impaired pro-inflammatory cytokine-stimulated cartilage catabolism in human knee explant cultures compared with controls, as shown by suppression of:
 – Gene expression of MMP1, MMP3, and MMP13
 – Stimulated secretion of all tested catabolic enzymes
 – Release of the cartilage catabolism byproducts GAG and NO
• These data indicate that LOR exerted protective effects on knee cartilage ex vivo despite previous OA-related joint damage.
• The results support the development of LOR as a potential disease-modifying treatment for knee OA. Phase 3 trials are ongoing.

Results

A. Enzyme gene expression (explants)

• Exposed to control or stimulated cartilage explants

B. Enzyme protein levels (supernatants)

• Exposed to control or stimulated cartilage explants

C. GAG and NO levels (supernatants)

• Exposed to control or stimulated cartilage explants

Methods

• Cartilage Explants: 72 hours
• DMSO or LOR: 2 hours
• IL-1β or TNF-α: 2 hours

Analysis

• Effects of LOR on cartilage catabolism (compared with DMSO) in the stimulated cultures were measured by:
 – qRT-PCR for gene expression of matrix metalloproteinases (MMPs) 1, 3, and 13
 – ELISA for release of MMP-1, MMP-3, MMP-13, and the thrombospondin motif-containing disintegrin/metalloproteinases ADAMTS-4 and ADAMTS-5
 – Dimethylmethane blue and Griss assays for release of the degradation products glycosaminoglycan (GAG) and nitric oxide (NO), respectively
• Data analyzed via mixed-effects, one-way ANOVA. Outliers identified using extreme studentized deviate test (Grubbs’ test, p<0.001). Type 1 error controlled at p<0.05 using Dunnett’s multiple comparison test.

References

V. Deshmukh, PhD, S. Grogan, PhD, T. Sea, MS, B. H. T., MD, D. Bhat, MS, W. Bugbee, MD, D. D’Lima, MD, PhD, Y. Yazici, MD

Scripps Research Institute, San Diego, CA; Shiley Center for Orthopedic Research and Education at Scripps Clinic

N=22; Mean ± SEM, *p<0.05, **p<0.01, ***p<0.001 vs. DMSO, one-way ANOVA.